skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Utt, Zachery"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interpreting the results of a quantum computer can pose a significant challenge due to inherent noise in these mesoscopic quantum systems. Quantum measurement, a critical component of quantum computing, involves determining the probabilities linked with quantum states post-multiple circuit computations based on quantum readout values provided by hardware. While there are promising classification-based solutions, they can either misclassify or necessitate excessive measurements, thereby proving to be costly. This article puts forth an efficient method to discern the quantum state by analyzing the probability distributions of data post-measurement. Specifically, we employ cumulative distribution functions to juxtapose the measured distribution of a sample against the distributions of basis states. The efficacy of our approach is demonstrated through experimental results on a superconducting transmon qubit architecture, which shows a substantial decrease (88%) in single qubit readout error compared to state-of-the-art measurement techniques. Moreover, we report additional error reduction (12%) compared to state-of-the-art measurement techniques when our technique is applied to enhance existing multi-qubit classification techniques. We also demonstrate the applicability of our proposed method for higher dimensional quantum systems, including classification of single qutrits as well as multiple qutrits. 
    more » « less